LCCE Topic
2017年05月号vol.73
LCCE 特集:座談会

Real World Dataのための統計解析 ~プロペンシティスコア解析を中心に~

山中竹春先生室谷健太先生
愛知医科大学病院
臨床研究支援センター 
室谷 健太 先生
横浜市立大学大学院
医学研究科 
臨床統計学
山中 竹春 先生

はじめに

がん臨床研究におけるエビデンス構築の基本は、ランダム化比較試験(RCT)によって有効性と安全性が検証されることです。NEJMやLancetといったトップジャーナルを検索すると、RCTの結果を目の当たりにします。他方、後ろ向き研究(retrospective study)から得られたエビデンスは、RCTに比べると若干インパクトに欠けると捉えられがちでした。データの質や量が十分でなかったことが理由の1つであったと考えられます。

最近、米国のSEER-Medicare databaseやフランスのESME databaseをはじめとする大規模データベースから実臨床の治療情報が適切に収集されるようになりました。こういったデータは“実世界を表すデータ”という意味でReal World Data (RWD)と呼ばれています。RWDを解析して得られたエビデンスは、RCTから得られたエビデンスとは違うことを意識して“Real World Evidence”と呼ばれるようになり、その研究成果はトップジャーナルを賑わせるようになっています[例えば、参考文献1, 2]。しかし、RWDを利用した研究は、統計学的には、つまるところ後ろ向き研究です。すなわち、RWDの統計解析を考えることは、後ろ向き研究の統計解析を考えることに帰着します。後ろ向き研究の定番といえば、回帰分析を使った多変量解析でしたが、ここ数年、Real World Evidenceの創出に寄与しているのがプロペンシティスコア (propensity score) 解析です。具体的なプロペンシティスコア解析については、次回、詳述します。以下ではA vs Bという2群比較を念頭において説明します。A, Bには比較をしたい因子、例えば、薬剤名 (A薬vs B薬)などが入ります。

回帰分析を利用したRWD解析

RWDデータに基づいてA vs Bという比較をする場合、AとBはランダム化されていませんから、2群間の患者背景の偏り(例えば、A群に高齢者が多い)を調整した上で評価しなければなりません。ここでは伝統的な方法である回帰分析に基づく調整法を復習します。回帰分析では次の式のようなイメージのモデルを当てはめます:

エンドポイント=
β0(治療群)+β1(調整因子1)+・・・+βK(調整因子K)

定番であるCox回帰やlogistic回帰などはこのイメージに類似した方法です。治療群の効果β0は「因子1から因子Kまでの計K個で“調整(adjusted)”した値」と呼ばれます。

回帰分析による多変量解析の“調整”の意味について少し説明しておきましょう。図1はエンドポイントに年齢が影響を与える様子を図にしたものです。エンドポイントに関するA群の平均とB群の平均を単純に比較した場合の2群の差は左図のとおりです。しかし、A群の方が年齢分布は高く、かつ年齢が高いほどエンドポイントの値も上がるので、平均の単純比較には問題があります。他方、年齢で調整した場合のA群とB群の差(β0)は右図のとおりです。年齢を固定したときの、つまり、年齢の影響を取り除いたときのA群とB群の平均の差は、回帰分析の結果当てはめられた2つの直線の差(β0)により表されます。この差は2群における年齢分布の偏りを調整した上での差と考えられます。これが“調整”のイメージです。調整前の左図と調整後の右図では、A群とB群の平均の差が異なることに注意してください。

回帰分析による背景因子の調整は簡便で使いやすい一方で、症例数がしばしば問題となります。多変量解析をするときに何例必要か?という問題については、例えば、Cox比例ハザードモデルでは、1:10 ruleと呼ばれる経験則があります。これは「k個の説明変数を入れるためには10×kのイベント数が目安」というものです1)。症例数ではなくイベント数であることがポイントで、例えば、1,000例のデータであっても、30例しかイベントが発生していなければ、回帰分析に投入できる背景因子の数は3個が目安となります。そのうち1つは治療群に使われますから、実質、調整可能な因子は2個ということになります。術後補助化学療法における全生存期間のようにイベントがあまり多く発生しないことが想定される場合は注意が必要です。

プロペンシティスコア

プロペンシティスコアの説明をしましょう。A vs Bという2群比較の状況を考えます。ある患者さんのプロペンシティスコアは、“その患者さんが治療Aを受ける確率p”と考えてください(1–pはBを受ける確率になります)。一般に、臨床医が患者さんを前にしたとき、治療法の選択は当該患者さんの背景因子を総合的に踏まえた上で行われるはずです。背景因子(年齢、性別、ECOG PS、転移臓器個数、etc.)の情報から、「その患者さんにAを選択する確率」が、その患者さんのプロペンシティスコアです。

プロペンシティスコア(p)はどのように計算すればよいのでしょうか。一般にはlogistic回帰が使われます。具体的には、治療群(A or B)を従属変数、患者背景を表す変数を独立変数として、logistic回帰を当てはめることで、治療群Aを受ける確率を決定することができます。図2では、患者背景は、年齢、性別、ECOG PS、転移臓器個数、の4つであるとしています。logistic回帰モデル式は以下のようになります。

数式

上の式を左辺がプロペンシティスコア(p)になるように変形すると、以下のようになります。

数式

一見、複雑そうな式ですが、右辺にある患者さんの年齢、性別、ECOG PS、転移臓器個数の情報を代入すれば、その患者さんのプロペンシティスコアpが簡単に計算できます。

図2を見てください。3人の患者さんのうち、左2名は年齢が若干異なるだけで、それ以外の因子については同じような患者背景を持っています。右の男性は患者背景が異なっています。それぞれの頭の上に対応するプロペンシティスコアを記載しました。見て頂けばわかる通り、同じような患者背景を持つ患者さんのプロペンシティスコアは同じような値になる傾向があります。逆に言えば、プロペンシティスコアが近い人同士は患者背景が似る傾向があります。

ここで注意したいのは“患者背景”とは何か?という点です。図2では年齢、性別、ECOG PS、転移臓器個数の4変数を“患者背景”と考えましたが、仮にAとBの治療選択に治療ライン数が寄与しているならば、ここに未治療なのか既治療なのかも加えられるべきだったはずです。この点は本質的です。プロペンシティスコア解析において、調整することができる患者背景はプロペンシティスコア推定に使われた独立変数のみです。裏を返せば、プロペンシティスコア推定に考慮されなかった患者背景(説明変数)については「調整されていない」ということです。一部ではプロペンシティスコア解析はRCTの代わりになると言われ、プロペンシティスコア解析をすれば正しい解析をしたような印象になりますが、何を患者背景としてプロペンシティスコアを推定したのか、という点に着目してみることはとても重要です。

次回はプロペンシティスコアを使った解析方法とその特徴を紹介していきます。それらの解析方法は“適切なプロペンシティスコア”を使ったときに正しい解析結果を出してくれます。適切なプロペンシティスコアとなるために、logistic回帰の独立変数が何を満たしていればよいのかには諸説ありますが、少なくとも「治療選択に寄与すると考えられる変数」は、すべて独立変数として投入されているべきです。しかし、これが難しいことはすぐにご理解いだけると思います。

1)1:10 ruleは経験則(rule of thumb)です。Harrell らの論文(3)は、必要イベント数の目安として、k<m/10(kは説明変数の数、mはイベント数)を提示しています。Vittinghoff ら(4)は、1:10 ruleの妥当性をシミュレーションによって調べましたが、1:10 ruleは少し保守的で、10倍よりも少なくて済むことを述べています。ただし、何倍ならよいかまでは述べられていません。

参考文献:

[1] Zhu J. et al. JAMA. 2012; 307(15): 1593-601.
[2] Dalatoge S. et al. Ann Oncol. 2016; 27(9): 1725-32.
[3] Harrell FE Jr et al. Stat Med. 1996; 15(4): 361-87.
[4] Vittinghoff E., McCulloch C.E. Am J Epidemiol. 2007; 165(6): 710-8.